Glicocálix endotelial: relevancia clínica y enfoque traslacional

Autores/as

DOI:

https://doi.org/10.24265/horizmed.2019.v19n4.12

Palabras clave:

Glicocálix, Endotelio, Proteoglicanos

Resumen

El glicocálix endotelial es una estructura sin forma definida que recubre la capa luminal del endotelio vascular y que está constituido, principalmente, por tres elementos: proteoglicanos, glucosaminoglicanos y glicoproteínas. Cumple distintas funciones, como regular la permeabilidad vascular a las moléculas y líquidos, la transducción de las fuerzas mecánicas de tensión y las cascadas de fibrinólisis y coagulación vascular; además, protege de la adhesión leucocitaria, plaquetaria y de patógenos. Los determinantes de lesión del glicocálix pueden ser de varios tipos, por ejemplo, incremento las fuerzas de tensión, especies reactivas de oxígeno (O ), aumento, a nivel plasmático, de sustancias como el sodio (hipernatremia), glucosa (hiperglicemia) y colesterol (hipercolesterolemia), y las moléculas proinflamatorias. Cualquiera de las noxas citadas, individualmente o combinadas, lesionan el glicocálix y la disfunción resultante se expresará clínicamente como disfunción endotelial, aumento de la permeabilidad vascular, paso de lipoproteínas al subendotelio, activación de la coagulación o aumento de la adhesión de plaquetas y leucocitos al endotelio.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Echandi K, Hernández F. Comparación de dos métodos de fijación para la estabilización de glicocálix bacteriano. Rev Biomed. 1998; 9(1): 7-11.

Frati-Munari AC. Importancia médica del glucocáliz endotelial. Arch Cardiol Méx. 2013; 83(4): 303-12.

Behnke O. Electron microscopical observations on the surface coating of human blood platelets. J Ultrastruct Res. 1968; 24(1): 51-69.

O'Brien JR. Some effects of mucopolysaccharide stains on platelet aggregation. J Clin Pathol. 1970; 23(9): 784-8.

Boom A, Daems WT, Luft JH. On the fixation of intestinal absorptive cells. J Ultrastruct Res. 1974; 48(3): 350-60.

Rosenfeld C, Paintrand M, Choquet C, Venuat AM. Cyclic variations in the ruthenium red stained coat of cells from a synchronized human lymphoblastoid line. Exp Cell Res. 1973; 79(2): 465-8.

Maksimenko AV, Turashev AD. No-reflow phenomenon and endothelial glycocalyx of microcirculation. Biochem Res Int. 2012; 2012: 859231.

Loscalzo J. Nitric oxide and vascular disease. N Engl J Med. 1995; 333(4): 251-3.

Deanfield J, Donald A, Ferri C, Giannattasio C, Halcox J, Halligan S, et al. Endothelial function and dysfunction. Part I: Methodological issues for assessment in the different vascular beds: a statement by the working group on endothelin and endothelial factors of the European Society of Hypertension. J Hypertens. 2005; 23(1): 7-17.

Zhang DX, Gutterman DD. Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol. 2007; 292(5): H2023-31.

Vanhoutte PM. Ageing and endothelial dysfunction. Eur Heart J Suppl. 2002; 4(Suppl. A): 8-17.

Zeiher AM, Schächinger V, Minners J. Long-term cigarete smoking impairs endothelium-dependent coronary arterial vasodilator function. Circulation. 1995; 92(5): 1094-100.

Quyyumi AA, Mulcahy D, Andrews NP, Husain S, Panza JA, Cannon RO. Coronary vascular nitric oxide activity in hypertension and hypercholesterolemia. Comparison of acetylcholine and substance P. Circulation. 1997; 95(1): 104-10.

Brunner H, Cockcroft JR, Deanfield J, Donald A, Ferrannini E, Halcox J, et al. Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases. A statement by the working group on endothelins and endothelial factors of the European Society of Hypertension. J Hypertens. 2005; 23(2): 233-46.

Tani C, Mosca M, d'Ascanio A, Versari D, Virdis A, Ghiadoni L, et al. Chronic inflammation and endothelial dysfunction: analysis of a cohort of patients with SLE and UCTD. Reumatismo. 2006; 58(3): 212-8.

Neunteufl T, Katzenschlager R, Hassan A, Klaar U, Schwarzacher S, Glogar D, et al. Systemic endothelial dysfunction is related to the extent and severity of coronary artery disease. Atherosclerosis. 1997; 129(1): 111-8.

Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005; 54(6): 1615-25.

Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J. 2009; 73(3): 411-8.

Avogaro A, Fadini GP, Gallo A, Pagnin E, De Kreutzenberg S. Endothelial dysfunction in type 2 diabetes mellitus. Nutr Metab Cardioasc Dis. 2006; 16(Suppl.1): S39-45.

Karalliedde J, Gnudi L. Endothelial factors and diabetic nephropathy. Diabetes Care. 2011; 34(Suppl.2): S291-6.

Saharay M, Shields DA, Georgiannos SN, Porter JB, Scurr JH, Coleridge Smith PD. Endothelial activation in patients with chronic venous disease. Eur J Vasc Endovasc Surg. 1998; 15(4): 342-9.

Nash GB, Buckley CD, Rainger EG. The local physicochemical environment conditions the proinflammatory response of endothelial cells and thus modulates leukocyte recruitment. FEBS Lett. 2004; 569(1-3): 13-7.

Luft JH. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc. 1966; 25(6): 1773-83.

Van den Berg BM, Vink H, Spaan JA. The endothelial glycocalyx protects against myocardial edema. Circ Res. 2003; 92(6): 592-4.

Reitsma S, Slaaf DW, Vink H, Van Zandvoort M, Oude Egbrink M. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007; 454(3): 345-59.

Yen WY, Cai B, Zeng M, Tarbell JM, Fu BM. Quantification of the endothelial surface glycocalyx on rat and mouse blood vessels. Microvasc Res. 2012; 83(3): 337-46.

Nieuwdorp M, Meuwese MC, Mooij HL, Ince C, Broekhuizen LN, Kastelein JJ, et al. Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. J Appl Physiol. 2008; 104(3): 845-52.

Nieuwdorp M, Meuwese MC, Vink H, Hoekstra JBL, Kastelein JJ, Stroes ES. The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr Opin Lipidol. 2005; 16(5): 507-11.

Tarbell JM, Pahakis MY. Mechanotransduction and the glycocalyx. J Intern Med. 2006; 259(4): 339-50.

Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res. 2010; 87(2): 300-10.

Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res. 2003; 93(10): e136-42.

Mochizuki S, Vink H, Hiramatsu O, Kajita T, Shigeto F, Spaan JA, et al. Role of hyaluronic acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release. Am J Physiol Heart Circ Physiol. 2003; 285(2): H722-6.

Thi MM, Tarbell JM, Weinbaum S, Spray DC. The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a "bumper-car" model. Proc Natl Acad Sci U S A. 2004; 101(47): 16483-8.

Arisaka T, Mitsumata M, Kawasumi M, Tohjima T, Hirose S, Yoshida Y. Effects of shear stress on glycosaminoglycan synthesis in vascular endothelial cells. Ann N Y Acad Sci. 1995; 748: 543-54.

Gouverneur M, Berg B, Nieuwdorp M, Stroes E, Vink H. Vasculoprotective properties of the endothelial glycocalyx: effects of fluid shear stress. J Intern Med. 2006; 259(4): 393- 400.

Barakat AI. Dragging along: the glycocalyx and vascular endothelial cell mechanotransduction. Circ Res. 2008; 102(7): 747-8.

Huxley VH, Williams DA. Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am J Physiol Heart Circ Physiol. 2000; 278(4): H1177-85.

Van Haaren PM, VanBavel E, Vink H, Spaan JA. Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy. Am J Physiol Heart Circ Physiol. 2003; 285(6): H2848-56.

Van Haaren PM, VanBavel E, Vink H, Spaan JA. Charge modification of the endothelial surface layer modulates the permeability barrier of isolated rat mesenteric small arteries. Am J Physiol Heart Circ Physiol. 2005; 289(6): H2503-7.

Jacob M, Bruegger D, Rehm M, Stoeckelhuber M, Welsch U, Conzen P, et al. The endothelial glycocalyx affords compatibility of Starling's principle and high cardiac interstitial albumin levels. Cardiovasc Res. 2007; 73(3): 575-86.

Lopez-Quintero SV, Amaya R, Pahakis M, Tarbell JM. The endothelial glycocalyx mediates shear-induced changes in hydraulic conductivity. Am J Physiol Heart Circ Physiol. 2009; 296(5): H1451-6.

Oberleithner H, Peters W, Kusche-Vihrog K, Korte S, Schillers H, Kliche K, et al. Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Arch. 2011; 462(4): 519-28.

Kusche-Vihrog K, Oberleithner H. An emerging concept of vascular salt sensitivity. F1000 Biol Rep. 2012; 4: 20.

Rostgaard J, Qvortrup K. Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae. Microvasc Res. 1997; 53(1): 1-13.

Rostgaard J, Qvortrup K. Sieve plugs in fenestrae of glomerular capillaries-site of the filtration barrier?. Cells Tissues Organs. 2002; 170(2-3): 132-8.

Haraldsson B, Sörensson J. Why do we not all have proteinuria? An update of our current understanding of the glomerular barrier. News Physiol Sci. 2004; 19: 7-10.

Desjardins C, Duling BR. Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am J Physiol. 1990; 258(3Pt.2): H647-54.

Zuurbier CJ, Demirci C, Koeman A, Vink H, Ince C. Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells. J Appl Physiol. 2005; 99(4): 1471-6.

Butler LM, Rainger GE, Nash GB. A role for the endothelial glycosaminoglycan hyaluronan in neutrophil recruitment by endothelial cells cultured for prolonged periods. Exp Cell Res. 2009; 315(19): 3433-41.

Henry CB, Duling BR. TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol. 2000; 279(6): H2815-23.

Lipowsky HH. Protease activity and the role of the endothelial glycocalyx in inflammation. Drug Discov Today Dis Models. 2011; 8(1): 57-62.

Mulivor AW, Lipowsky HH. Inflammation -and ischemia- induced shedding of venular glycocalyx. Am J Physiol Heart Circ Physiol. 2004; 286(5): H1672-80.

Mulivor AW, Lipowsky HH. Inhibition of glycan shedding and leukocyte-endothelial adhesion in postcapillary venules by suppression of matrix metalloprotease activity with doxycycline. Microcirculation. 2009; 16(8): 657-66.

Lipowsky HH, Gao L, Lescanic A. Shedding of the endothelial glycocalyx in arterioles, capillaries, and venules and its effect on capillary hemodynamics during inflammation. Am J Physiol Heart Circ Physiol. 2011; 301(6): H2235-45.

Iacoviello L, D'Adamo MC, Pawlak K, Polishchuck R, Wollny T, Buczko W, et al. Antithrombotic activity of dermatan sulphates, heparins and their combination in an animal model of arterial thrombosis. Thromb Haemost. 1996; 76(6): 1102-7.

Trowbridge JM, Gallo RL. Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology. 2002; 12(9): R117-25.

Tovar AMF, De Mattos DA, Stelling MP, Sarcinelli-Luz BS, Nazareth RA, Mourão PA. Dermatan sulfate is the predominant antithrombotic glycosaminoglycan in vessel walls: implications for a possible physiological function of heparin cofactor II. Biochim Biophys Acta. 2005; 1740(1): 45-53.

Tollefsen DM. Heparin cofactor II modulates the response to vascular injury. Arterioscler Thromb Vasc Biol. 2007; 27(3): 454-60.

He L, Giri TK, Vicente CP, Tollefsen DM. Vascular dermatan sulfate regulates the antithrombotic activity of heparin cofactor II. Blood. 2008; 111(8): 4118-25.

Sieve I, Münster-Kühnel AK, Hilfiker-Kleiner D. Regulation and function of endothelial glycocalyx layer in vascular diseases. Vascul Pharmacol. 2018; 100: 26-33.

Steppan J, Hofer S, Funke B, Brenner T, Henrich M, Martin E, et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J Surg Res. 2011; 165(1): 136-41.

Chen G, Wang D, Vikramadithyan R, Yagyu H, Saxena U, Pillarisetti S, et al. Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry. 2004; 43(17): 4971-7.

Karamysheva AF. Mechanisms of angiogenesis. Biochemistry (Mosc). 2008; 73(7): 751-62.

Gunst J, Derese I, Aertgeerts A, Ververs E-J, Wauters A, Van den Berghe G, et al. Insufficient autophagy contributes to mitochondrial dysfunction, organ failure, and adverse outcome in an animal model of critical illness. Crit Care Med. 2013; 41(1): 182-94.

Goldberg R, Meirovitz A, Hirshoren N, Bulvik R, Binder A, Rubinstein AM, et al. Versatile role of heparanase in inflammation. Matrix Biol. 2013; 32(5): 234-40.

Goodall KJ, Poon IK, Phipps S, Hulett MD. Soluble heparan sulfate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4. PloS One. 2014; 9(10): e109596.

Lorenzo Corchón A. El glicocálix o cubierta celular [Internet]. Disponible en: https://www.asturnatura.com/articulos/envoltura-celular/membrana-plasmatica-glucocalix.php. ISSN 1887-5068

##submission.downloads##

Publicado

2019-11-30

Cómo citar

1.
Vélez JL, Montalvo M, Vélez PA, Velarde G, Jara González FE, Barboza-Meca J. Glicocálix endotelial: relevancia clínica y enfoque traslacional. Horiz Med [Internet]. 30 de noviembre de 2019 [citado 2 de diciembre de 2024];19(4):84-92. Disponible en: https://aws_horizonte/index.php/horizontemed/article/view/1135

Número

Sección

Artículos de revisión

Artículos más leídos del mismo autor/a